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A GENERALIZED TREATMENT OF THE
ENERGETICS OF TRANSLATING CONTINUA,

PART II: BEAMS AND FLUID CONVEYING PIPES
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The energetics of translating tensioned beams and fluid transporting pipes under fixed,
simply supported and free boundary conditions are analyzed in a generalized manner. The
conservative and non-conservative forces acting at the boundaries lead to energy transfer
between the translating continua and the boundary supports. The forces and associated
convective velocities are identified from the one-dimensional transport theorem. The group
velocity and the wavenumbers of propagating and evanescent waves in the dispersive
continua are defined. The time variation of total energy is represented in terms of the
impedances and the reflection coefficients of the propagating waves in the continuum and
the dynamic stability of the translating continua is discussed based on the energy
expressions. The critical fluid speed in a cantilevered pipe, at which the resultant energy
flux into the pipe at the free end vanishes, is determined by the use of travelling wave
solutions.
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1. INTRODUCTION

A translating, Euler–Bernoulli beam is the most common model of translating elastic
systems such as magnetic tapes, band saws, power transmission chains and belts, textile
and composite fibers, flexible manipulators and appendages under deploying motion, and
pipes conveying fluid [1–6]. The translating beams and pipes may lose stability by either
divergence or flutter. The translating continua undergo divergence instability when the
centrifugal forces induced by moving particles exceed the restoring forces on the continua.
The translating continuum with an asymmetric boundary configuration, such as a
cantilevered pipe conveying fluid, can lose stability by flutter at high transport velocity.

The dynamic stability of elastic systems under conservative or non-conservative forces
has received a significant attention [7–9]. Non-conservative systems can exist under static
loads and conservative systems can occur under dynamic forces [10] in some cases.
Contrary to the generally accepted notion that the total energy of free oscillation in
conservative elastic systems is conserved, the total energy of a translating beam with fixed
or simple supports varies periodically. The periodic variation in the total energy of the
conservative gyroscopic system is due to energy flux resulting from boundary forces and
the relative velocity of the moving continua at the stationary boundary. Energy flux into
or out of a translating tensioned beam at a fixed or simple support was studied by Wickert
and Mote [11]. They identified generalized forces leading to non-zero energy flux into the
beam. Barakat [2] also showed that the total energy of a travelling Euler beam without
tension is periodic.
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As an extension of Part I [13] investigating the energetics of second order translating
continua, this paper studies the energetics of fourth order continua, such as translating
tensioned beams and fluid conveying pipes, with fixed, simply supported and free
boundaries. The generalized forces and the corresponding velocities resulting in energy flux
at the boundaries are identified. The group velocity and the wavenumbers of travelling and
evanescent waves in the translating dispersive media are defined and used to quantify the
energy transferred at the boundaries. Energy reflection coefficient, determining the energy
transfer, are represented in terms of the impedances and the amplitudes of the propagating
waves reflected from, and incident on, the boundary. The dynamic stability of the
translating continua under both symmetric and asymmetric boundary configurations is
then discussed based on the energy expression.

2. TRANSLATING TENSIONED BEAM

2.1.    

The linear equation of transverse motion of a tensioned Euler–Bernoulli beam travelling
at constant speed v between two supports is [14, 15]

r012W
1T2 +2V

12W
1X 1T

+V2 12W
1X21−P0

12W
1X2 +EI

14W
1X4 =0, X$(0, L), (1)

where W(X, T) is transverse displacement, r is linear density of the beam, P0 is tension,
and EI is flexural rigidity of the beam. Introduction of the dimensionless variables

x=X/L, w=W/L, t=(T/L2)zEI/r, v=VLzr/EI, P=P0(L2/EI),

into equation (1) gives

wtt +2vwxt + v2wxx −Pwxx +wxxxx =0, x$(0, 1). (2)

Here the subscript notation indicates differentiation. The critical transport speed for
divergence instability is determined from the time-independent equilibrium balance of
equation (2), giving vc =zP+ p2 for a simply supported beam, and vc =zP+4p2 for
fixed supports [16]. For sufficiently high tension, these critical speeds reduce to vc 2zP,
and the problem becomes essentially second order (string).

2.2.   

At subcritical speed, harmonic waves in a translating tensioned beam have the form

w(x, t)=A ei(vt− kx). (3)

The wavenumber and frequency of the beam satisfy the dispersion relation

k4 + (P− v2)k2 +2vvk−v2 =0. (4)

The wavenumber roots of equation (4) for the translating, infinite, tensioned beam include
two real roots and a conjugate pair of roots with a positive (and usually small) real part.
The positive and negative real wavenumbers describe downstream and upstream
propagating waves and the conjugate root pair describes evanescent (non-propagating,
spatially decaying) waves. The evanescent waves arise from a neighboring boundary,
discontinuity or applied force [17, 18]. The four wavenumbers kd , −ku , and kR 2 ikI are
shown in Figure 1 for P=0 and 100. kR vanishes at v=0, and it is asymptotic to zero
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as tension increases and/or transport speed decreases. kI is proportional to the time-rate
of decay of the evanescent waves, and increases with tension. The wavenumber kd for the
downstream propagating wave decreases as v increases, and the upstream wavenumber ku

increases with increasing v. Non-vanishing v renders the downstream wavenumber smaller
than the upstream one. The harmonic solution of equation (2) is

w(x, t)=Ad e−ikdx eivt +Au eikux eivt +Ac
d e(−ikR − kI)x eivt +Ac

u e(−ikR + kI)x eivt. (5)

Ad and Au are the complex amplitudes of the downstream and upstream propagating waves,
and Ac

d and Ac
u are the complex amplitudes of the downstream and upstream evanescent

waves. The phase velocities of propagating waves are cd =v/kd downstream and cu =v/ku

upstream. By the substitution of v= kc into equation (4), the phase velocities are explicitly
obtained:

cd = v+zP+ k2
d , cu =−v+zP+ k2

u . (6)

2.3.  :  

The phase velocity c/k is the speed of propagation of geometrical features of the wave,
while the group velocity cg = 1v/1k measures the speed of propagation of the energy. The
group velocities of downstream and upstream propagation waves in the translating
tensioned beam become

cgd =
1v

1kd
=

2k3
d +(P− v2)kd + vv

v− vkd
, cgu =

2k3
u +(P− v2)ku − vv

v+ vku
. (7)

The group velocity of a stationary beam cg =2k3/v=2zv is recovered from equation
(7) when P= v=0. The group and phase velocities in the translating beam are plotted
in Figure 2(a–d) when P=0 and 100. In a zero-tensioned beam, the energy of waves

Figure 1. Wavenumbers of a translating tensioned beam: (a) P=0 and v=2; (b) P=0 and v=100; (c)
P=100 and v=2; (d) P=100 and v=100.
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Figure 2. Group and phase velocities of downstream and upstream waves along a translating tensioned beam:
(a) P=0 and v=100; (b) P=0 and v=100; (c) P=0 and v=2; (d) P=100 and v=2.

propagates both downstream and upstream at the same velocity cgd = cgu for all v. The
downstream and upstream group velocities in a tensioned beam are not the same for vq 0.
At low frequency, the group velocity essentially equals the phase velocity (Figure 2(d)) as
in a string model. As a group of waves propagates through the beam, cg q c indicates that
high frequency waves appear at the front of the wave group, travel to the rear and
disappear [17]. The difference between the group and phase velocities increases with
frequency.

2.4.  

The wavenumbers of the translating continua are explicitly obtained from equation (4)
in special cases. When v=0, the wavenumbers of a stationary tensioned beam are

kd = ku =(−P/2+zP2/4+v2)1/2, kR =0, kI =(P/2+zP2/4+v2)1/2, (8)

and when P=0, the wavenumbers of a translating beam are

kd =−
v
2

+Xv+
v2

4
, ku =

v
2

+Xv+
v2

4
, kR =

v
2

, kI =Xv−
v2

4
. (9)

When vq 2zv and P=0, kI is imaginary. The critical transport speed, vk , leading to
kI =0 is plotted in Figure 3 when v=1, 10 and 100. The critical speed vk increases with
tension and frequency. When v satisfies

vk Q vQ vc , (10)



v k

20

10

0 20 80
Tension (P)

6040 100

ω

100

10

1

 ,   739

the two evanescent waves in equation (5) become propagating waves, and harmonic waves
in the beam are represented by the following three downstream and one upstream
propagation waves:

w(x, t)=Ad1 e−ikd1x eivt +Ad2 e−ikd2x eivt +Ad3 e−ikd3x eivt +Au eikux eivt, (11)

where

kd1 =−
v
2

+Xv+
v2

4
, kd2 =

v
2

+Xv2

4
−v, kd3 =

v
2

−Xv2

4
−v, ku =

v
2

+Xv+
v2

4
.

(12)

When vq vk , three downstream propagating waves with different phase velocities are
permissible for a single harmonic wave. Therefore, the wave motion in a translating beam
with a finite length, is characterized by the four propagating waves, when v is larger than
the critical speed for a wave of fundamental frequency (vq vk(v1)). In this paper, it is
assumed that vQ vk(v1) and the wave motion has the form (5).

3. PIPE CONVEYING FLUID

3.1.    

Consider a pipe (fourth order continuum) conveying fluids at a constant velocity U. If
gravitational forces, internal damping, externally imposed tension and pressurization
effects are neglected, the linear equation of transverse motion W(X, T) of the pipe becomes
[20, 22]

(mf +mp)
12W
1T2 +2mfU

12W
1X 1T

+mfU2 12W
1X2 +EI

14W
1X4 =0, x$(0, L), (13)

where mf and mp are mass densities of the fluid and pipe, and EI is the flexural rigidity
of the pipe. For the variables

x=X/L, w=W/L, t=T/L2zEI/(mf +mp), u=ULzmf/EI,

b=mf/(mf +mp),

Figure 3. The speed vk leading to kI =0 for v=1, 10 and 100; vk =2zv when P=0.
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Figure 4. Wavenumbers of a pipe conveying fluid: (a) b=0·2 and u=1; (b) b=0·2 and v=100; (c) b=0·7
and u=1; (d) b=0·7 and v=100.

equation (13) is written in the dimensionless form

wtt +2zbuwxt + u2wxx +wxxxx =0, x$(0, 1), (14)

where 0E bE 1. When mf�mp , b:1 and equation (14) becomes identical to equation (2)
for a translating beam with P=0. The critical speeds for divergence instability are

uc = p, uc =2p (15)

for a pipe with simple and fixed supports, respectively. If tension is applied on the
fluid-flowing pipe (14), the normalized linear equation becomes

wtt +2zbuwxt + u2wxx −Pwxx +wxxxx =0, x$(0, 1), (16)

where P is the pipe’s tension. The translating tensioned beam (equation (2)) and the fluid
conveying pipe (equation (14)) can be considered as special cases of equation (16).

3.2.   

For a harmonic travelling wave w(x, t)=A ei(vt− kx), the dispersion relation of equation
(14) is

k4 − u2k2 +2zbuvk−v2 =0. (17)

The wavenumbers, kd , −ku , and kR 2 ikI , which are roots of equation (17), are plotted in
Figure 4, when b=0·2 ((a) and (b)) and b=0·7 ((c) and (d)). Contrary to the case of a
translating tensioned beam, the wavenumber kd of the downstream propagating wave
decreases initially with frequency and increases after a particular frequency. The
wavenumber kd also decreases initially with flow speed and increases (or cd decreases) at
high flow speed. However the wavenumber ku increases monotonically with increasing
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frequency and flow speed. The phase velocities of downstream and upstream travelling
waves in the fluid conveying pipes are

cd =v/kd =zbu+zk2
d −(1− b)u2, cu =−zbu+zk2

u −(1− b)u2. (18)

4. ENERGETICS OF FOURTH ORDER CONTINUA

The total energy per unit length of the translating tensioned beam (2) is the sum of the
kinetic and potential energy densities:

E
 = 1
2(wt + vwx)2 + 1

2(Pw2
x +w2

xx). (19)

The total mechanical energy E(t) in the material particles within the fixed region 0E xE 1
is

E(t)=g
1

0

E
 dx. (20)

Because the beam transports mass at speed v, the time-rate of change of the total energy
is expressed in the one-dimensional transport theorem [13]:

E� (t)=Et + vE
 =10 +F=10, (21)

where ( ˙ )=d/dt, ( )t = 1/1t. Et describes the local rate of change of energy within the
domain, the second term of equation (21) represents the net rate of outward energy flux
[19], and F denotes energy flux into the beam induced by the Coriolis and centrifugal
forces at a free boundary. The non-conservative energy flux vanishes at fixed and simply
supported boundaries. Substitution of equations (19) and (20) into equation (21) and use
of equation (2) give

E� (t)= (Pwx −wxxx)(wt + vwx)=10 +wxx(wxt + vwxx)=10 +F=10. (22)

The first two terms on the right side of equation (21) are expressed by the rate of work
by shear forces and bending moments at the boundaries. At an unconstrained boundary,
the instantaneous transverse velocity is wt + vwx , and the material derivative of the slope
is wxt + vwxx . Thus the energy fluxes, due to the boundary force and moment multiplied
by the convective velocities are observed.

For the pipe transporting fluid (equation (14)), the energy density becomes

E
 = 1
2b(wt +(u/zb)wx)2 + 1

2(1− b)w2
t + 1

2w
2
xx , (23)

and the total energy rate

E� (t)=−wxxx0wt +
u

zb
wx1b

1

0

+wxx0wxt +
u

zb
−wxx1b

1

0

+F=10

−g
1

0

(1− b)wtt0 u
zb

wx1 dx (24)

is obtained by substitution of equation (23) into equation (21) and use of equation (14).
The non-conservative energy flux F occurs when flowing fluid exits into or out of
unconstrained boundaries. The last term on the right represents energy flux from the
inertial force under transverse motions within the domain. It always vanishes over a cycle
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of travelling waves because of the 90° phase difference between the local inertia force wtt

and the convective velocity (u/zb)wx [13].

4.1.  

For a tensioned travelling beam with simple supports (w=wxx =0 at x=0 and 1), the
temporal energy variation (22) wtih F=0 becomes [11]

E� (t)= (Pwx −wxxx)vwx =10. (25)

The shear force Pwx −wxxx at the fixed end does work on the material with instantaneous
transverse velocity vwx . The sign of (Pwx −wxxx)vwx in equation (25) is calculated using
travelling waves. For a downstream wave w(x, t)=A ei(vt− kdx) incident on x=1, the force
and the convective velocity at the end are

Pwx −wxxx =−i(Pk+ k3
d )A ei(vt− kd), vwx =−ivkdA ei(vt− kd). (26)

Therefore, the force and convective velocity are in phase and the total energy increases
at the downstream support. For an upstream wave, the force and transverse velocity vwx

are always 180° out of phase and energy flux is out of the continuum (negative) at the
upstream end.

For the pipe conveying fluid between two simple supports, the energy variation becomes

E� (t)=−(u/zb)wxxxwx =10. (27)

In this case, the shear force of the pipe does work with the relative transverse velocity
between the flowing fluid and the stationary boundary.

4.2.  

In a translating fixed-fixed beam, the total energy flux with F=0 becomes

E� (t)=−vw2
xx(0, t)+ vw2

xx(1, t). (28)

The work is done by the bending moment wxx with the material derivative of the slope vwxx

on the translating beam. Energy flux into the beam is always positive at the downstream
end and negative at the upstream end. Under a symmetric boundary configuration, the
two energy fluxes with different signs at the downstream and upstream boundaries result
in a periodic variation of the total energy of free motion. For a pipe conveying fluid with
fixed boundaries, the total energy variation E� (t) is obtained by replacing v by u/zb in
(28).

4.3.       

When the exit end of a pipe conveying fluid is unconstrained, the non-conservative force
convected by discharging flow is the only source of energy input, because the shear force
and bending moment at the end are zero. The non-conservative force acting on the
downstream free end is determined by Hamilton’s principle [24]:

d g
t2

t1

L dt+g
t2

t1

dW dt=0, (29)

where L=T−V is the Lagrangian function made up of the kinetic energy (T) and
potential energy (V) of the fluid-transporting pipe and dW is the virtual work convected
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by the non-conservative force F1(t) which is not included in the Lagrangian. The
substitution of the Langrangian,

L=
1
2 g

1

0 0w2
t +2

u
zb

wxwt + u2w2
x −w2

xx1 dx,

and the virtual work by the unknown non-conservative force,

dW=F1(t)dw(1, t),

into equation (29) gives the boundary term at x=1:

{wxxx −wxx +(u/zb)wt + u2wx +F1}dw=0. (30)

With the boundary conditions wxx =0 and wxxx =0 at the free end, equation (30) gives the
non-conservative force

F1(t)=−zbuwt(1, t)− u2wx(1, t). (31)

In this case, the Coriolis and centrifugal forces are applied due to fluid particles passing
through the end, unlike the case of the second order continuum where only Coriolis force
acts on a free boundary [13]. The dimensional value of the normalized force (31),

F1(t)=−mfUWT(L, T)+mfU2WX(L, T), (32)

is equal to the result shown in references [20, 24]. The energy flux associated with the force
is

F=F1(t)wt(1, t)=−zbu{w2
t (1, t)+ (u/zb)wx(1, t)wt(1, t)}. (33)

Accordingly, the time-rate of change of total energy in the pipe with a fixed–free boundary
configuration becomes

E� (t)=−(u/zb)w2
xx(0, t)−zbu{w2

t (1, t)+ (u/zb)wx(1, t)wt(1, t)}. (34)

For small fluid speed, wx(1, t)wt(1, t)q 0 and energy decreases at both boundaries
(E� (t)E 0). As u increases, wx(1, t) and wt(1, t) have opposite signs and energy is transferred
into the pipe at the downstream free end. The expression for a critical fluid velocity, where
the energy flux at x=1 vanishes, is now examined by considering travelling waves. When
a travelling wave w(x, t)=Ad ei(vt− kdx) is incident on the free end, the force

F1(t)= izbuAd(v−(u/zb)kd) ei(vt− kd) (35)

vanishes when

u/zb=v/kd = cd . (36)

By the substitution of (18) into (36), the energy critical speed is given by

ue =zbcd = kdzb/(1− b). (37)

If uq ue , the force F1(t) is in phase with the transverse velocity at the free end,
wt(1, t)= ivAd ei(vt− kd), and energy is transferred into the pipe over a complete cycle of
oscillation (Fq 0). The energy critical speed for incident waves of frequency v=10 and
100 are plotted in Figures 5(a) and (b). There exist three regions b describing three different
mechanisms of energy transfer at the free end. At small b, two critical speeds exist and
the magnitude of the wave energy increases only when the flow speed is between the two
critical speeds. At the second region of b with one critical speed ue , the wave energy
increases when uq ue . As b increases above a critical value, which is b2 0·952 in Figure



u
e

40

0 0.2 0.8
β

0.60.4 1

Energy decreases

80

Energy decreases

Energy 
increases

(b)

40
Energy decreases

80

E
n

er
gy

 d
ec

re
as

es

Energy increases

(a)

0

.-.   . . , 744

Figure 5. Energy critical speed ue : (a) v=10 and (b) v=1000.

5(a) or b2 0·935 in Figure 5(b), no critical speed exists and then energy flux induced from
the free end is always negative at any flow speed.

Over one cycle T=2p/v of free oscillation, the total energy, transferred from the
flowing fluid into the cantilevered pipe at both downstream and upstream boundaries,
becomes

DW=g
T

0

E� (t) dt=g
T

0 0− u
zb

w2
xx(0, t)−zbu6w2

t (1, t)+
u

zb
wx(1, t)wt(1, t)71 dt. (38)

The speed producing DW=0 is the critical speed for flutter instability of the cantilevered
pipe and can be determined from equation (38). Because energy is always transferred out
of the pipe at the upstream fixed end of the cantilevered pipe, the energy critical speed
ue in equation (37) gives the lower bound to the flutter speed uf . When uq uf , the total
energy flux is positive and self-excited oscillation occurs [21, 23].

If the pipe has free inlet and fixed outlet boundaries, as would be obtained when sucking
fluid through a cantilever, the non-conservative force

F0(t)=zbuwt(0, t)+ u2wx( 0, t) (39)

acts on the upstream free end. For an upstream incident wave w(x, t)=Au ei(vt+ kux), the
force

F0(t)= izbuAu(v+(u/zb)ku) eivt (40)

is in phase with the boundary motion wt =ivAu eivt, and the resultant energy flux is positive
(F=F0(t)wt(0, t)q 0). Because energy flux at the downstream fixed end is also positive
((u/zb)w2

xx(1, t)q 0), the total energy over a cycle of free oscillation increases and the pipe
loses stability at any flow speed. At different boundary conditions, energy fluxes are
summarized in Table 1. It is noted that the sign of energy flux changes from negative to
positive when the downstream boundary condition changes from free to fixed or simple
support. This explains an interesting phenomenon, so called, instability by adding support
[21, 25]. For a cantilevered pipe conveying fluid at high speed (uc Q uQ ue) which is above
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T 1

Energy flux in a pipe conveying fluid

Boundary fixed simple free

Generalized Force −wxxx wxx −zbuwt − u2wx

Convective velocity (u/zb)wx (u/zb)wxx wt

Energy flux at downstream end + + − (if uQ ue), + (if uq ue)
Energy flux at upstream end − − +

the speed for divergence instability, if the free end was slightly touched with a finger, the
pipe promptly buckled.

For a tensioned pipe conveying fluid (equation (16)) with free outlet and fixed inlet
boundaries, the energy critical speed is obtained in a similar manner:

ue =zb/(1− b)(P+ k2
d ). (41)

As the special case (b=1) of the tensioned pipe conveying fluid, the non-conservative force
acting on a downstream free end of the translating tensioned beam (equation (2)) becomes

F1(t)=−vwt(1, t)− v2wx(1, t). (42)

In this special case, the energy critical speed (41) becomes infinite and energy flux into the
system at the free end is always negative at any speed. The applied forces and energy fluxes
at the different boundaries are summarized in Table 2.

5. GENERALIZED EXPRESSION FOR ENERGY TRANSFER

The energy contained in one wavelength l=2p/k of a single harmonic wave A ei(vt− kx)

propagating along a translating tensioned beam becomes

El =g
x+ l

x

E
 dx= pk(P+ k2)AA*= pvZAA*, (43)

where E
 is the energy density of the translating beam and

Z= k(P+ k2)/v=(P+ k2)/c (44)

is the mechanical impedance. The asterisk denotes the complex conjugate. By equation (6),
the impedances of downstream and upstream waves are

Zd =(P+ k2
d )/"v+zP+ k2

d #, Zu =(P+ k2
u )/"−v+zP+ k2

u #. (45)

T 2

Energy flux in a translating tensioned beam

Boundary fixed simple free

Generalized Force Pwx −wxxx wxx −vwt − v2wx

Convective velocity vwx vwxx wt

Energy flux at downstream end + + −
Energy flux at upstream end − − +
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For a pipe conveying fluid, the impedances of downstream and upstream waves are

Zd = k2
d/"zbu+zk2

d −(1− b)u2#, Zu = k2
u/"−zbu+zk2

u −(1− b)u2#. (46)

Consider a harmonic wave, propagating along the translating continuum, incident on a
boundary of the medium. The energy DW, transferred into the continuum at the boundary
by the wave reflection over a period equals the difference between the energies of the
reflected and incident waves [13]:

DW=Er −Ei = pv(ZrArA*r −ZiAiA*i ). (47)

Here Zr and Zi are the impedances of reflected and incident propagating waves and Ar

and Ai are the complex amplitudes of the waves. The energy reflection coefficient,

R=Er/Ei =Zr/Zirr*, (48)

gives the exact expression for energy transfer between the translating continuum and the
boundary support, in terms of impedances and the reflection coefficient r=Ar/Ai . The
reflection coefficient is evaluated using the boundary conditions of the support.

6. WAVE AND ENERGY REFLECTIONS

The energy transfer between a translating media and a boundary support, given by
equation (48), is determined by considering two waves propagating in opposite directions.
Wave motions with imaginary and complex wavenumbers never cause energy flow [26].
Only propagating waves with real wavenumbers propagate energy. Exceptionally,
evanescent waves are associated with energy flow only through the interaction between two
opposite evanescent waves [27, 28]. We will consider only a propagating wave incident on
the support to determine energy variation at a boundary. Attention to the propagating
wave is reasonable because evanescent waves arising at a boundary decay rapidly and are
negligible in most cases [29].

6.1.      

Consider a wave propagating downstream and impinging on the downstream boundary.
An upstream propagating wave and an evanescent wave are generated. From equation (5),
the harmonic wave motion at the downstream boundary is

w(x, t)=Ad e−ikdx eivt +Au eikux eivt +Ac
u e(−ikR + kI) eivt. (49)

Substitutions of equation (49) into the following boundary conditions give reflection
coefficients r=Au/Ad and rc =Ac

u/Ad :

simple support: w(1, t)=0, wxx(1, t)=0,

r=
Au

Ad
=−

k2
d − k2

R + k2
I −i2kRkI

k2
u − k2

R + k2
I −i2kRkI

, rc =
Ac

u

Ad
=

k2
d − k2

u

k2
u − k2

R + k2
I −i2kRkI

; (50)

fixed support: w(1, t)=0, wx(1, t)=0,

r=−
kI +i(kd − kR)
kI −i(ku + kR)

, rc =
i(ku + kd)

kI −i(ku + kR)
; (51)
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Figure 6. The reflection coefficients of a translating tensioned beam at downstream fixed, simple and free
supports for a wave of v=100: (a) r when P=0; (b) r when P=100; (c) rc when P=0; (d) rc when P=100.

free support: wxx(1, 0)=0, wxxx(1, t)=0,

r=−0kd

ku1
2 kI +i(kd − kR)
kI −i(ku + kR)

,

rc =−
ik2

d (ku + kd)
kI(k2

I −3k2
R −2kukR)− i{k2

I (ku +3kR)− k2
R(ku + kR)} . (52)

The reflection coefficients r and rc for a stationary beam are recovered by setting v=0
and P=0 (kd = ku = kI and kR =0). This leads to r=−1, rc =0 for a simply supported
stationary beam, r=−i, rc =−(1− i) for a fixed support, and r=−i, rc =(1− i) for
a free boundary. The magnitudes of the coefficients r and rc are plotted in Figure 6 for
the boundary supports (50)–(52) when P=0 and 100. The magnitude of r decreases with
transport speed for all the cases. Unlike the case of a translating string with r=1 for any
transport speed [13], the reflection coefficient r at a fixed or simple support of the
translating beam varies with v. The magnitude of r at the fixed end is identical to that
at the simple support, although the phases of the reflection coefficients are different.
However, the magnitudes and phases of rc at the fixed and simple supports are different.
=rc= increases with the speed v at the simple support, while it decreases with v at the fixed
end. As transport speed increases, =r= and =rc= at a free boundary become smaller. Finally,
the energy reflection coefficient using the reflection coefficient r of propagating waves is
given by

Rd =
Eu

Ed
=0Zu

Zd1rr*=
ku(P+ k2

u )
kd(P+ k2

d )
rr*. (53)

Similarly, the energy reflection coefficient for a fluid-transporting pipe satisfies

Rd =(k3
u /k3

d )rr*. (54)
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6.2.      

When a wave is incident upon the upstream boundary, it is reflected into a downstream
propagating wave and a downstream decaying wave. The wave motion at x=0 following
the impinging upstream wave is

w(x, t)=Ad e−ikdx eivt +Au eikux eivt +Ac
d e(−ikR − kI)x eivt. (55)

Substitutions of equation (55) into simple, fixed, and free boundary conditions give the
reflection coefficients at each support:

simple support: w(0, t)=0, wxx(0, t)=0,

r=
Ad

Au
=−

k2
u − k2

R + k2
I +i2kRkI

k2
d − k2

R + k2
I +i2kRkI

, rc =
Ac

d

Au
=

k2
u − k2

d

k2
d − k2

R + k2
I +i2kRkI

; (56)

fixed support: w(0, t)=0, wx(0, t)=0,

r=−
kI +i(ku + kR)
kI −i(kd − kR)

, rc =
i(ku + kd)

kI −i(kd − kR)
; (57)

free support: wxx(0, t)=0, wxxx(0, t)=0,

r=−0ku

kd1
2 kI +i(ku − kR)
kI −i(kd − kR)

,

rc =
ik2

u (ku + kd)
kI(k2

I −3k2
R +2kdkR)− i{k2

I (kd +3kR)+ k2
R(kd − kR)}. (58)

The magnitudes of the reflection coefficients for the simple, fixed, and free upstream ends
are plotted in Figure 7. Both =r= and =rc= increase with transport speed v. From equation

Figure 7. The reflection coefficients of a translating tensioned beam at upstream fixed, simple and free supports
for a wave of v=100: (a) r when P=0; (b) r when P=100; (c) rc when P=0; (d) rc when P=100.
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Figure 8. Energy reflection Rd and Ru of a pipe conveying fluid at u=1: (a) simple or fixed support; (b) free
boundary; - - - -, b=0·2; — · — · —, b=0·7; ——, b=1·0.

(48), the energy reflection coefficient Ru at the upstream boundary of a translating beam
is

Ru =
Ed

Eu
=

kd(P+ k2
d )

ku(P+ k2
u )

rr*. (59)

Similarly, Ru for a fluid-transporting pipe in terms of wavenumbers and r becomes

Ru =(k3
d/k3

u )rr*. (60)

7. DISCUSSION

The energy reflection coefficients Rd and Ru of a pipe conveying fluid at u=1 are plotted
in Figures 8(a) and (b) for b=0·2, 0·7, and 1. As predicted in equations (25) and (28),
energy flux induced by the flowing fluid is positive (Rd q 1) at a downstream fixed or simple
support and negative (Ru Q 1) at an upstream one. As b increases or frequency decreases,
the magnitude of energy transferred at the downstream fixed (simple) support increases.
At a free end of the fluid conveying pipe, the opposite energy transfer mechanism is shown
in Figure 8(b). Energy is always transferred out of the pipe at the downstream free end.
In this case, Coriolis and centrifugal forces are induced by mass transport through the free
end and do negative work. When b=1, the energy coefficients actually become those of
a zero-tensioned beam translating at v=1.

When a highly tensioned beam (P=100) is axially moving, the dependence of Rd and
Ru on wave frequency is illustrated in Figure 9. At low frequency, the high tension produces
the dominant energy and the coefficients are essentially identical to those of a translating
string in Part I [13]:

Rd =(zP+ v)/(zP− v)=1·2222, Ru =(zP− v)/(zP+ v)=0·8182. (61)
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Figure 9. Energy reflection Rd and Ru of translating beams and strings with transport speed v=1 and tension
P=100: (a) ——, translating beams (simple or fixed support); - - - -, fluid-flowing beam (free support), b=1;
— · — · —, translating string (fixed support).

As the limiting case (b=1) of a tensioned pipe conveying fluid (equation (16)) with a free
end, the translating tensioned beam gains energy at an upstream free boundary and loses
energy at a downstream one. The energy change at each boundary is asymptotic to zero
with increasing frequency because of the increasing contribution of bending to the total
energy.

The energy reflection coefficients of a translating tensioned beam as a function v are
plotted in Figure 10(a) when v=100 and P=100. Over one cycle of oscillation, the

Figure 10. Energy reflection coefficient Rd and Ru when v=100 and tension P=100: (a) translating beam
(——) and string (- - - -) with fixed or simply supported boundary; (b) forth order (——) and second order (- - - -)
tensioned pipes with free boundary.
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magnitude of energy transferred into or out of the fixed or simply supported beam is
always smaller than that of a translating string with fixed supports, and the discrepancy
increases with transport speed. In this case, the critical speed for buckling instability is
vc =10 for the translating string, vc =10·482 for the simply supported beam and vc =11·81
for the fixed supported beam. When b=1, the energy reflection coefficients of both the
fourth and second order tensioned pipes at free boundaries are shown in Figure 10(b).
Energy flux into or out of the fourth order pipe is larger than that at the second order
one.

The wavenumbers, group velocities and reflection coefficients in the translating
tensioned beam are calculated for two cases of low and high frequency in Table 3, when
tension P=100 and transport speed v=1. For v=1, the group velocities cg =11·0012
downstream and cg =9·0019 upstream are close to the phase velocities cd =zP+1=11
downstream and cu =zP−1=9 upstream. The group velocity downstream is always
larger than that upstream because of translation of the elastic medium. The discrepancy
is small at high frequency v=103.

8. CONCLUSIONS

(1) At a fixed or simple support of the fourth order translating continua, the relative
velocity between entering or exiting material particles and the stationary boundary leads
to energy flux into the system. The energy flux is positive at a downstream boundary and
negative at an upstream one.

(2) At a free boundary of a cantilevered pipe conveying fluid, the Coriolis and
centrifugal forces which are induced by discharging fluids, do work on the boundary. The
sign of the energy transfer depends on flow velocity. A flow speed leading to zero energy
flux at the free end is determined by the incident wavenumber and the mass parameter
b. It gives the lower bound for the flow speed at flutter of the cantilevered pipe.

(3) Energy transfer from the boundary support into the translating beam is quantified
by the energy reflection coefficient without identifying explicitly the applied forces at the
boundary. The coefficient depends on the mechanical impedance and the ratio of the
reflected to incident wave amplitudes.
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